
Gh afir, Ib r a hi m, P r e nosil, Vaclv, H a m m o u d e h, Mo h a m m a d,
Baker, Thar, Jabb ar, So h ail, Khalid, S h e hz a d a n d Jaf, S a r d a r
(20 18) BotDe t: A Sys t e m for Re al Tim e Bot n e t Co m m a n d a n d
Con t rol Traffic Det ec tion. IEEE Access Op e n Acces s, 6 (1). p p .
3 8 9 4 7-3 8 9 5 8. ISS N 2 1 6 9-3 5 3 6

Downloa d e d fro m: h t t p://su r e . s u n d e rl a n d. ac.uk/id/e p rin t /10 4 5 1/

U s a g e g u i d e l i n e s

Ple a s e r ef e r to t h e u s a g e g uid elines a t
h t t p://su r e . s u n d e rl a n d. ac.uk/policies.h t ml o r al t e r n a tively con t ac t
s u r e@s u n d e rl a n d. ac.uk.

SPECIAL SECTION ON CYBER-THREATS AND COUNTERMEASURES
IN THE HEALTHCARE SECTOR

Received April 12, 2018, accepted May 26, 2018, date of publication June 13, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2846740

BotDet: A System for Real Time Botnet Command
and Control Traffic Detection
IBRAHIM GHAFIR 1,2, VACLAV PRENOSIL1, MOHAMMAD HAMMOUDEH 3, THAR BAKER 4,
SOHAIL JABBAR 5, SHEHZAD KHALID6, AND SARDAR JAF2
1Faculty of Informatics, Masaryk University, Brno 602 00, Czech Republic
2Department of Computer Science, Durham University, Durham DH1 3LE, U.K.
3Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, U.K.
4Department of Computer Science, Liverpool John Moores University, Liverpool L3 5UA, U.K.
5Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan
6Department of Computer Engineering, Bahria University, Islamabad 44220, Pakistan

Corresponding author: Ibrahim Ghafir (ibrahim.ghafir@durham.ac.uk)

ABSTRACT Over the past decade, the digitization of services transformed the healthcare sector leading to
a sharp rise in cybersecurity threats. Poor cybersecurity in the healthcare sector, coupled with high value
of patient records attracted the attention of hackers. Sophisticated advanced persistent threats and malware
have significantly contributed to increasing risks to the health sector. Many recent attacks are attributed to
the spread of malicious software, e.g., ransomware or bot malware. Machines infected with bot malware can
be used as tools for remote attack or even cryptomining. This paper presents a novel approach, called BotDet,
for botnet Command and Control (C&C) traffic detection to defend against malware attacks in critical
ultrastructure systems. There are two stages in the development of the proposed system: 1) we have developed
four detection modules to detect different possible techniques used in botnet C&C communications and
2) we have designed a correlation framework to reduce the rate of false alarms raised by individual detection
modules. Evaluation results show that BotDet balances the true positive rate and the false positive rate
with 82.3% and 13.6%, respectively. Furthermore, it proves BotDet capability of real time detection.

INDEX TERMS Critical infrastructure security, healthcare cyber attacks, malware, botnet, command and
control server, intrusion detection system, alert correlation.

I. INTRODUCTION
Country’s national security, economic vitality and daily life
rely on a safe, stable, and resilient cyberspace. We depend
on this vast array of networks to provide healthcare services,
transport and communication, power our homes and run our
economy [1]. Over the last decade, cyber attacks and intru-
sions have increased substantially, disrupting critical opera-
tions, resulting in business downtime and exposing sensitive
personal and business information.

Statistics draw a grim picture about the cybersecurity chal-
lenges and digital risks in the healthcare industry. A report
by the US Department of Health and Human Services [2]
reveals that the healthcare sector has suffered from approx-
imately four data breaches a week in 2016. To put this
into perspective, one in every three American citizens was
a victim of a breach in the healthcare sector. One of the
primary reasons behind targeting healthcare organizations
is that these organizations do not set protecting patient
data as a priority, hence they under invest in qualified IT
security personnel. The lack of solid information security
infrastructure makes healthcare organizations an easy target.

For instance, the recent attack on the National Health Ser-
vice (NHS) in the UK showed that some hospitals and
care providers systems were obsolete or have not been
patched against well-known vulnerabilities. Additionally,
patient records contain a wealth of information that can be
used for identifying theft, financial/insurance fraud and even
blackmailing. In 2017, 15,000 medical records have been
stolen from Beverly Hills plastic surgery clinic to bully sev-
eral high-profile celebrities.

Today, intelligence agencies and governments military are
actively preparing for cyber warfare. Global activities against
software, hardware, or data are referred to as cyber attack in
the field of computer networks or systems. These activities
lead to degrading, disrupting, destroying or denying access
to network/system services or resources. Activities that target
gathering intelligent are referred to as cyber exploitation [3].
The main objective of these activities is to gain unauthorized
access to information and data.

Over the last decade, malicious software or malware has
increased, particularly in the healthcare industry. They have
become one of the main reasons for the majority of the

VOLUME 6, 2018 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 38947

https://orcid.org/0000-0003-3702-3866
https://orcid.org/0000-0003-1058-0996
https://orcid.org/0000-0002-5166-4873
https://orcid.org/0000-0002-2127-1235

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

(distributed) denial-of-service (Dos) activities [4], direct and
scanning attacks [1], [5], [6]. Noticeably, the motivation from
fame seeking and curiosity has been shifted to unlawful
financial attainment, which resulted in the sophistication of
malicious software [7]. Moreover, the availability of easy-
to-use toolkits to build malware will probably keep these
malwares a threat to individuals, business and governments
in the foreseeable future.

Generally, there are two classes of malware: (a) mal-
ware that targets the general population and (b) customized
information-stealingmalware that targets particular organiza-
tions [7] such as healthcare providers. Zombies, which refers
to those machines infected with bot malware, can be used
as tools for remote attack or can be part of a botnet, which
is completely controlled by the botnetmaster [7]. Bots are
‘‘enslaved’’ host computers in botnets (networks formed by
bots). One or more botmasters control bots in botnets and
the intention is to perform malicious activities [8], [9]. The
essential goal of botnets is to control organized crime syn-
dicate, criminal, or group of criminals to use compromised
machines for performing illegal activities. Experts mention
that about 16−25% of the machines connected to the Internet
are parts of botnets [10], [11]. Bots are different from the
other malware. They are capable to create Command and
Control (C&C) channels. Bots recognize themselves by their
C&C channels through which they can be controlled, updated
and instructed. The C&C servers are usually machines that
have been exploited and sorted in a distributed form to limit
traceability.

The detection of botnet C&C traffic is challenging for cur-
rent Intrusion Detection Systems (IDS) for several reasons:
(1) it is a benign traffic and follows normal protocol usage;
(2) their volume of traffic is small; (3) the number of bots
may be very small in the monitored network; and (4) Bots’
communications may be encrypted [12].

This paper aims to contribute to IDS research, particularly
to botnet C&C traffic detection. The proposed approach,
called BotDet, undergoes two main phases. The first phase
runs various modules to detect different possible tech-
niques used in botnet C&C communications. The second
phase uses a framework for alert correlation to reduce the
number of false positives. The main contributions of this
work are:

1) The development of four methods for the detection
of various attack techniques used in botnet C&C
communications. Although methodologies exist in the
literature for blacklist-based detection modules, their
implementation and validation in real traffic are signif-
icant contributions to the field.

2) The development of a framework to correlate results
from individual detection methods to reduce the false
alarms.

3) The automation of blacklists, used in some of the
detection modules, based on different intelligent
feeds. This allows BotDet to offer real time attack
detection.

4) The evaluation results show that BotDet balances the
true positive rate and the false positive rate with 82.3%
and 13.6% respectively.

The remainder of this paper is structured as follows.
Section II presents the related work to botnet C&C traf-
fic detection. The proposed approach, including the detec-
tion modules and correlation framework, is presented in
Section III. Section IV shows the evaluation results and
Section V concludes the paper.

II. RELATED WORK
There are two main approaches for botnet C&C traffic detec-
tion in the literature. The first one is based on setting up
honeynets in the network [13]. This approach is often used to
understand and analyze a botnet technology and characteris-
tics. However, honeynets are not always capable of detecting
bot infection. The second approach is based on passive traffic
monitoring [14]. These approaches can be classified into
signature-based and anomaly-based methods, respectively.
Signature-based detectionmethodsmake use of known signa-
tures and behavior of existing botnets, therefore it can be used
for detecting only known botnets [15]. Anomaly-based detec-
tion methods are able to detect unknown botnets as they try to
detect botnets based on network traffic anomalies like traffic
on unusual ports, high volumes of traffic, unusual system
behavior and high network latency [16]. Detection methods
can be further classified into host-based and network-based
methods. Host-based method detects botnets by monitor-
ing and analyzing the internals of a computer system [17].
Whereas the network-based method monitors the network
traffic to detect botnets [18].

Snort is a signature-based IDS [19] capable of monitor-
ing and analyzing network traffic to match signatures of
known botnets. Snort consists of many components working
together in order to detect malicious patterns in the traffic.
Packets from network interfaces are captured by the packet
decoder and they are prepared to be preprocessed or sent
to the detection engine. Then, packets are checked against
specific plugins by a processor, and if anomalies are found,
the processor raises an alert.

In [20], Balram and Wilscy propose a host-based approach
for botnet C&C communication detection. This approach
analyses suspicious flows produced by filtering out benign
traffic from the traffic created by a host. A normal profile of
the host traffic is used for the filtering. The behavioral pattern
of flows to all destinations is examined in a bid to generate the
host profile. This approach achieved a detection rate of 100%
and false positives of 8%.

In [21], Fedynyshyn et al. present a host-based detection
method able to detect the existence of botnet C&C traffic
on the observed machine, and also categorize the type of
C&C communication used by the bot, e.g., peer-to-peer (P2P)
based, HTTP-based or IRC-based. As it does not examine the
packets payloads, their detection method is independent of
the content of the C&Cmessages. Their method for detecting
and categorizing botnet C&C connections is based on three

38948 VOLUME 6, 2018

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

hypotheses: (1) it is possible to distinguish between botnet
C&C communication and botnet non-C&C communication,
(2) it is possible to distinguish between botnet C&C commu-
nication and valid communication and (3) there are shared
characteristics between different styles of C&C and different
botnet families.

An approach for bot-infected machines detection was pre-
sented by Wurzinger et al. [22], which requires no previ-
ous knowledge of the way a bot spreads. It depends on the
characteristic behavior of a bot, particularly: (a) receiving
commands from the botmaster, and (b) responding to these
commands by carrying out some activities. Both commands
and responses can be monitored in the network traffic and
detection models can be built. The authors ran a bot in a
controlled network to record its traffic and then they examine
the received commands and responses activities. For this
purpose, they proposed techniques to determine points in the
network that were involved in the response activity. After-
wards, the traffic had been observed before this response
is analyzed to find the corresponding command. By these
detection models the network traffic is scanned for similar
actions aiming to detect bot-infected machines.

Giroire et al. [23] presented another host-based detection
method for botnet C&C traffic detection. This method is
based on the fact that the infected machines should stay
in contact with C&C severs to be instructed and controlled
by the botmaster. It is assumed that those connections are
persistent and established regularly. A white-list of benign
destinations that the user regularly contacts is built and all
the user outbound traffic is monitored. When a connection
is persistent enough and the destination is not white-listed,
an alert is generated and the user is informed and asked to
decide. If the destination is legitimate, the user can easily
add it to the white-list, otherwise the connection is deemed
as C&C communication and blocked.

A network-based botnet detection system, BotSniffer,
was proposed in [12]. This system is based on anomaly-
based detection algorithms to detect both HTTP and IRC
based C&Cs with no previous knowledge of C&C server
addresses or signatures. The main goal in BotSniffer is to
identify spatial-temporal similarity patterns and correlation
in network traffic that are generated between the infected
hosts and botnet C&C servers. They study two common
styles usually used for botnet control, ‘‘push’’ and ‘‘pull’’.
An example for the push style is IRC-based C&C is where
the commands are sent or pushed to the infected hosts. In the
pull style, the commands are downloaded (or pulled) by the
infected hosts, as in HTTP-based C&C. When a set of hosts
is found to carry out the same actions in response to similar
messages from the same server, it is considered to be part of
a botnet.

Several works have attempted to detect Botnet C&C traf-
fic. However, they have limitations in achieving real time
detection, and they cannot balance between false positive and
false negative rates. Therefore, the significance of this work
is we propose methods that achieve real time detection and

produce a balance between false positive and false negative
rates.

III. BOTDET DESIGN AND SPECIFICATIONS
BotDet runs through two main phases. The first phase hosts
four modules to detect different techniques used in botnet
C&C communications. The second phase requires using a
framework for alert correlation, based on voting among indi-
vidual detection modules. Figure 1 shows the architecture of
the proposed BotDet.

FIGURE 1. Architecture of the proposed approach for C&C traffic
detection.

Initially, sniffed data traffic is scanned to detect techniques
used in botnet C&C communications. To this end, four detec-
tion modules have been developed which are: malicious IP
address detection module (MIPD), malicious SSL certificate
detection module (MSSLD), domain-flux detection mod-
ule (DFD) and Tor connection detection module (TorD). The
output of this phase is alerts, also known as events, triggered
by individual modules. Alerts raised by individual detection
modules are then fed into the correlation framework (CF),
which aims to find links between alerts to increase the confi-
dence of botnet traffic detection and decrease the rate of false
alarms.

The four detection modules operate in real time, as BotDet
can process the sniffed network traffic live and does not have
to store it. Some of the detection modules are blacklist-based,
where some of these blacklists are publicly published or pri-
vately maintained. Information on different intelligence feeds
at once is used to automatically update all used blacklists
within BotDet. All detectionmodules are implemented on top
of Bro [24], [25], which is a passive and open-source network
traffic analyzer.

A corresponding event is generated as an output for each
detection module. This event is to be used in the correlation
framework as explained later in Section III-F. In addition to
this, an alert email is sent to the Request Tracker (RT) [26].
The network security team then conduct further forensics and
reply to the alert–a reply from the team is assumed to be
within 24 hours from the alert generation. This method allows
the detection module to suppress all the alerts with the same
infected host and the same malicious item into one alert per
day. Also, this method reduces the number of email alerts
sent to the network security team and computational cost on

VOLUME 6, 2018 38949

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

the correlation framework. After generating an alert, the trig-
gered alert is added to a specific corresponding table by the
module and stored for 24 hours. This way, generating the
same alert within the same 24 hours by the module is avoided.
During the detection of an APT technique but prior to gen-
erating an alert, the module queries the corresponding table
in order to check if the same alert exists in the table. If the
same alert is found then it is ignored. Otherwise, information
about the new alert and the malicious connection (such as
alert_type, timestamp, src_ip, src_port, dest_ip, dest_port,
infected_host, malicious_item) is recorded in a specific log
file (individual log for each technique detection), which is
used for keeping historical record of the monitored network.

The following subsections present the four detection mod-
ules MIPD, MSSLD, DFD and TorD. The automatic update
details of the utilized blacklists are provided as well. Then,
the correlation framework methodology is given.

A. MALICIOUS IP ADDRESS DETECTION (MIPD)
The MIPD module detects any connection between the
infected host and a C&C server. The detection is based
on a blacklist of malicious IPs of C&C servers [27]–[30].
As depicted in Figure 2, MIPD processes the network traf-
fic to search for a match in the source and destination IP
addresses for each connection with the IP blacklist [31].

FIGURE 2. Methodology of the malicious IP detection.

Algorithm 1 shows the implementation pseudo-code of the
MIPD module.

The network traffic is monitored to identify any
new_connection type event generated by Bro. This event is
generated for every new connection and raised with the first
packet of a previously unknown connection [32]. Through
the new_connection event, MIPD checks both connection
sides IP addresses to detect if the connection is to or from
a malicious IP. If the connection destination IP exists in
the t_ip_blacklist table, this means, the connection is to
a malicious IP. MIPD then checks the connection source
IP through the is_local_addr function to determine if the
connection is established by a host from the monitored
network. On detecting a malicious connection, but prior to
raising an alert, MIPD checks the t_suppress_ip_alert table
to determine if the same ip_alert has been generated in the
last 24 hours. If the same ip_alert has not been generated,
MIPD does the following: (i) an ip_alert event is generated
and information about the malicious connection is written

Algorithm 1 Implementation Pseudo-Code of MIPD
1: Input: blacklist of malicious IP addresses (t_ip_blacklist

table)
2: Input: new_connection event
3: Check if the connection is to a malicious IP:
4: if the connection destination IP is in t_ip_blacklist then
5: if the connection is established by one of the net-

work’s hosts then
6: ifMIPD didn’t raise the same alert during the past

24 hours then
7: goto Check if the connection is from a mali-

cious IP:
8: else
9: Raise an alert (ip_alert)
10: Record the generated alert
11: Notify the network security team via email
12: Deny repeating the same alert during the next

24 hours
13: end if
14: else
15: goto Check if the connection is from a malicious

IP:
16: end if
17: else
18: goto Check if the connection is from a malicious IP:
19: end if
20: Check if the connection is from a malicious IP:
21: if the connection source IP is in t_ip_blacklist then
22: if the connection is oriented to one of the network’s

hosts then
23: ifMIPD didn’t raise the same alert during the past

24 hours then
24: goto End
25: else
26: Raise an alert (ssl_alert)
27: Record the generated alert
28: Notify the network security team via email
29: Deny repeating the same alert during the next

24 hours
30: end if
31: else
32: goto End
33: end if
34: else
35: goto End
36: end if
37: End

to a blacklist_detection_ip.log file, (ii) an email alert about
the malicious IP detection is sent to RT and, (iii) the current
detected set (host, ip) is added to the t_suppress_ip_alert
table.

When the connection is from a malicious IP, the same
procedure as in when the connection is to a malicious IP

38950 VOLUME 6, 2018

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

followed by paying attention to the source and destination IP
addresses as shown in Algorithm 1.

B. MALICIOUS SSL CERTIFICATE DETECTION (MSSLD)
Secure Sockets Layer (SSL) encryption is used for protect-
ing C&C communications because it makes it difficult to
identify it as malicious traffic. A blacklist of malicious SSL
certificates for detecting C&C communications is used by
MSSLD [33], [34]. There are two forms of the certificate in
the blacklist: (a) SHAI fingerprints and (b) serial & subject.
Malware and malicious activities are associated with both.
As depicted in Figure 3, the main processes are: (1) process-
ing the network traffic, (2) filtering the secure connections
and (3) of each secure connection the SSL certificate is
matched with the SSL certificate blacklist [35].

FIGURE 3. Methodology of the malicious SSL certificate detection.

Two methods are implemented for malicious SSL certifi-
cate detection because the blacklist comprises two types of
malicious SSL certificates (which are SHA1 fingerprints and
serial & subject): (1) intelligence-based MSSLD which is
shown in Algorithm 2 and, (2) event-based MSSLD, as in
Algorithm 3.

The Intelligence-based MSSLD uses the Bro Intelligence
Framework [36] and it is configured to monitor the hashes
of all secure connections SSL certificates, where data from
different data sources can be consumed by MSSLD for hash
matching. The framework is connected to blacklist.intel file,
which contains the SSL certificate blacklist. The intelligence
framework receives the SSL certificates after extracting the
secure connections traffic. The framework checks the SSL
certificates against the intelligence data set blacklist.intel.
If a match is found with any of the indicator_type of the
intelligence data, an Intel::match event is generated. The
Intel::match event is examined to check if the indicator_type
is CERT_HASH. If that is the case then this indicates the con-
nection has a malicious SSL certificate. Next, is_local_addr
function is used for checking the source and IP addresses
of the connection sides to determine whether the connection
to or from the monitored network is established. In order the
avoid generating identical alerts within any 24-hour period,
t1_suppress_ssl_alert table is checked. No alert will be gen-
erated if the table contains the same detected [host IP address,
SSL certificate hash] set.

The processes of the MSSLD module are: (1) generating
an ssl_alert event, (2) logging the malicious connection

Algorithm 2 Implementation Pseudo-Code of Intelligence-
Based MSSLD
1: Input: blacklist of certificates’ hashes
2: for each SSL encrypted connection do
3: Compute the certificate hash
4: if the certificate hash matches with the blacklist then
5: if the connection is established by one of the

network’s hosts then
6: if MSSLD didn’t raise the same alert during

the past 24 hours then
7: Raise an alert (ssl_alert)
8: Record the generated alert
9: Notify the network security team via

email
10: Deny repeating the same alert during the

next 24 hours
11: end if
12: else if the connection is oriented to one of the

network’s hosts then
13: if MSSLD didn’t raise the same alert during

the past 24 hours then
14: Raise an alert (ssl_alert)
15: Record the generated alert
16: Notify the network security team via

email
17: Deny repeating the same alert during the

next 24 hours
18: end if
19: else
20: goto End
21: end if
22: else
23: goto End
24: end if
25: end for
26: End

information to the blacklist_detection_ssl.log log file,
(3) composing and sending an email alert about the malicious
SSL certificate detection to the RT, and (4) updating the table
t1_suppress_ssl_alert with the current detected set [host IP
address, SSL certificate hash].

The process in the event-based MSSLD involves process-
ing and filtering the network traffic into secure connections
traffic. Then, for the encountered X509 certificates [37],
the x509_certificate event is generated, where the serial and
subject of the X509 certificate are checked for the exis-
tence of the certificate in the bad_ssl group. This group
contains serials and subjects of malicious X509 certificates.
MSSLD determines if there is a connection to or from one
of the monitored network hosts if a match is found. The
source and destination IP addresses are checked through
the is_local_addr function. The t2_suppress_ssl_alert table
is checked before generating the ssl_alert. This is to avoid
generating an alert that may have been generated in the past

VOLUME 6, 2018 38951

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

Algorithm 3 Implementation Pseudo-Code of Event-Based
MSSLD
1: Input: blacklist of certificates’ hashes
2: Input x509_certificate event
3: Obtain the serial and subject of the certificate
4: if serial and subject match with the blacklist then
5: if the connection is established by one of the net-

work’s hosts then
6: if MSSLD didn’t raise the same alert during the

past 24 hours then
7: Raise an alert (ssl_alert)
8: Record the generated alert
9: Notify the network security team via email
10: Deny repeating the same alert during the next

24 hours
11: end if
12: else if the connection is oriented to one of the net-

work’s hosts then
13: if MSSLD didn’t raise the same alert during the

past 24 hours then
14: Raise an alert (ssl_alert)
15: Record the generated alert
16: Notify the network security team via email
17: Deny repeating the same alert during the next

24 hours
18: end if
19: else
20: goto End
21: end if
22: else
23: goto End
24: end if
25: End

24-hour period. As in the previous intelligence-basedmethod,
the process involves: (1) MSSLD generating an ssl_alert
event; (2) recording the malicious connection information in
the blacklist_detection_ssl.log file; (3) sending an alert to the
RT; and (4) updating the t2_suppress_ssl_alert table with the
current detected set [host IP address, SSL certificate hash].

C. DOMAIN FLUX DETECTION (DFD)
One common technique used for C&C communications is
the domain flux technique, where each infected machine
separately uses a Domain Generation Algorithm (DGA) to
generate a list of domain names [38]. By using the domain
flux technique, the infected host attempts to query and con-
nect to a large number of generated domain names, which are
expected to link the host to the C&C servers. This technique
makes it difficult for law enforcement to successfully shut
down a large number of domains. To prevent infected hosts
from connecting to the C&C servers, law enforcement needs
to pre-register all the domains that an infected host queries
every day before the attacker registers them [39].

The DFD module detects algorithmically generated
domain flux, where the infected host queries for the exis-
tence of a large number of domains, whilst the owner has
to register only one. This leads to the failure of many DNS
queries. DFD utilizes DNS query failure to detect domain
flux attacks. Figure 4 depicts the way the network traffic is
processed, particularly DNS traffic. All DNS query failures
are analyzed and, for detecting domain flux attacks and iden-
tifying infected hosts, the same IP address is constrained by
a threshold for DNS query failures [40].

FIGURE 4. Methodology of the domain flux detection.

Algorithm 4 shows the implementation pseudo-code of the
DFD module. DNS traffic is extracted and processed; DFD
waits for the dns_message event to be generated by Bro.
This event is generated for any DNS message and provides
information regarding the connection to the DNS server [41].

Through the dns_massage event, DFD checks for two
conditions: (1) if this connection is established by a host
from the monitored network using the is_local_addr func-
tion; (2) if the dns_message is due to DNS error of
NXDOMAIN, which indicates the non-existence of the
domain name where it is either invalid or not registered.
This information can be extracted from the dns_message
event (cdnsrcode_name==‘‘NXDOMAIN’’). If these two
conditions are met, the source IP address that searches for
unregistered domain names is saved in the t_dns_failure
table. This table counts the number of DNS query failures
of the same IP address. The counter is increased by one
(++ t_dns_failure[cidorig_h]) if the t_dns_failure table
contains the current IP address. When the number
of DNS query failures exceeds a specified threshold,
dns_failure_threshold, the current IP address is deleted
from the t_dns_failure table to reset the counter of this
IP address to zero. Because recent malware can gener-
ate 50, 000 domain names every day [42], the threshold is
set to 50 DNS query failures per 5 minutes. Then, if the
IP address of the potentially infected host does not exist
in the t_suppress_domain_flux_alert table, DFD generates a
domain_flux_alert event.

DFD also sends a domain flux detection email alert to the
RT, and updates the t_suppress_domain_flux_alert table by
adding the current detected host IP address.

38952 VOLUME 6, 2018

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

Algorithm 4 Implementation Pseudo-Code of DFD
1: Input: dns_failure_threshold
2: Extract DNS traffic
3: Input: dns_message event
4: if the connection is established by one of the network’s

hosts then
5: if dns_message event is due to DNS error of NXDO-
MAIN then

6: if the host IP is not in t_dns_failure table then
7: write host IP into t_dns_failure
8: host IP counter← 1
9: else
10: Increase host IP counter by 1
11: if host IP counter > dns_failure_threshold

then
12: Delete host IP from t_dns_failure
13: Reset host IP counter to zero
14: if DFD raised the same alert during the

past 24 hours then
15: goto End
16: else
17: Raise an alert (domain_flux_alert)
18: Record the generated alert
19: Notify the network security team via

email
20: Deny repeating the same alert during

the next 24 hours
21: end if
22: else
23: goto End
24: end if
25: end if
26: else
27: goto End
28: end if
29: else
30: goto End
31: end if
32: End

D. TOR CONNECTION DETECTION (TORCD)
Tor [43], [44] is an anonymous communication network that
provides user privacy by encrypting the connection through
an overlay network. Tor uses onion routing to direct client’s
traffic over a circuit of different relays, denying any single
relay to know the complete path of the traffic [45]. Tor is
oftenmisused by criminals and hackers to remotely direct and
instruct infected machines [46].

The TorCD module detects any connection to a Tor
network. It is based on a list of Tor servers which is
publicly published [47]. As shown in Figure 5, the net-
work traffic is processed and the source and destination IP
addresses for each connection are matched with Tor servers
list [48].

FIGURE 5. Methodology of the Tor connection detection.

Algorithm 5 shows the implementation pseudo-code of
the TorCD module. The network traffic is processed, when
a SYN-ACK packet is seen in response to a SYN packet
during a TCP handshake [49] a connection_established event
is generated by Bro.

Through the connection_established event, TorCD checks
both sides of the connection to detect if the connection is
to or from a Tor network. The process proceeds in the same
way as in the MIPD module (see Section III-A), i.e., a
tor_alert event is generated, and an alert email is sent to
the RT.

E. AUTOMATIC UPDATES
Based on different intelligence feeds, the blacklists of
blacklist-based detection modules are automatically updated
at once. The automatic update and detection processing run
in parallel and it is not required to halt or restart BotDet. This
way, it is possible to monitor the live network and support
real-time detection.

There are two automatic update mechanisms. Figure 6
shows the automatic update of the blacklists used by the
MIPD, MSSLD and TorCD modules. The user crontab file
is configured to run the blacklist_update.sh each day at
3:00am, where the shell script connects to the intelligence
feeds via the Internet and downloads updated blacklist of
malicious IPs, malicious SSL certificates and Tor servers into
the ip_blacklist.txt, ssl_blacklist.txt and Tor_servers_list.txt
files respectively. The Input Framework [50], built in
Bro, enables the four modules to use those text files
as an input to BotDet. The Input Framework reads the
ip_blacklist.txt, ssl_blacklist.txt and Tor_servers_list.txt files
into the t_ip_blacklist table, the bad_ssl group and the
t_tor_server table, respectively.

Figure 7 shows the automatic update of the blacklist used
by the MSSLD module. The crontab file user is configured
to run blacklist_update.sh daily at 3:00am. This shell script,
which utilizes the Internet to connect to the data source
servers, downloads updated blacklist of malicious SSL cer-
tificate hashes into a new blacklist.intel file. The Intelligence
Framework consumes the text file, described in Section III-B.

F. BOTDET CORRELATION FRAMEWORK (CF)
CF alert correlation time is configured to one day. Based on
the number of the linked alerts, CF can generate four types of

VOLUME 6, 2018 38953

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

Algorithm 5 Implementation Pseudo-Code of TorCD
1: Input: Tor servers list (t_tor_server table)
2: Input: connection_established event
3: Check if the connection is to a Tor network:
4: if the connection destination IP is in t_tor_server then
5: if the connection is established by one of the net-

work’s hosts then
6: if TorCD raised the same alert during the past

24 hours then
7: goto Check if the connection is from a Tor
network:

8: else
9: Raise an alert (tor_alert)
10: Record the generated alert
11: Notify the network security team via email
12: Deny repeating the same alert during the next

24 hours
13: end if
14: else
15: goto Check if the connection is from a Tor net-

work:
16: end if
17: else
18: goto Check if the connection is from a Tor network:
19: end if
20: Check if the connection is from a Tor network:
21: if the connection source IP is in t_tor_server then
22: if the connection is oriented to one of the network’s

hosts then
23: if TorCD raised the same alert during the past

24 hours then
24: goto End
25: else
26: Raise an alert (tor_alert)
27: Record the generated alert
28: Notify the network security team via email
29: Deny repeating the same alert during the next

24 hours
30: end if
31: else
32: goto End
33: end if
34: else
35: goto End
36: end if
37: End

alerts, which areC&C-1 alert,C&C-2 alert,C&C-3 alert and
C&C-4 alert. For example, the C&C-3 alert is raised when
CF finds three different alerts about the same infected host
during the previous day. For the C&C-1 alert, CF does not
raise a tor_alert because Tor is a legitimate service that can
be used legally by some users on the network.

FIGURE 6. Automatic update of the blacklists used by the MIPD, MSSLD
and TorCD modules.

FIGURE 7. Automatic update of the blacklist used by the MSSLD module.

IV. EVALUATION RESULTS
Three scenarios were implemented to evaluate BotDet. In the
first one, third-party pcap files were analyzed. In the second
scenario, a virtual network was used. In the third scenario,
the university campus live traffic was monitored.

In the first scenario, BotDet was run on pcap files that
contained captured malware traffic. Four groups of pcap
files were used, PCAP1, PCAP2, PCAP3 and PCAP4.
PCAP1 files contain Trojan-Spy.Win32.Zbot.oowo traffic that
spans 27 days in two files with total size of 11.7 GB and
connections to 6339 IP addresses. The studied malware uses
domain flux for C&C communication [28]. PCAP2 files con-
tain Trojan-Spy.Win32.Zbot.rfnx/.sbfp/.sbcq traffic in 3 files,
each spanning 10 hours and having total size of 28 MB. This
malware connects to a blacklisted IP address and uses domain
flux [29]. PCAP3 files contain recorded traffic, in 11 files,
of multiple types of malware that all use the domain flux
technique [30]. PCAP4 files contain recorded traffic of the
Trojan.Tbot (Skynet Tor Botnet) malware in 6 files with
a total size of 31.6 MB. Trojan.Tbot uses Tor network to
communicate with its C&C center [51]. None of the analyzed
pcap files contained known bad SSL certificates, this module
was tested in the second scenario. All pcap files had been
analyzed by the providers, so the ground truth was known.

The detection modules were configured to consume the
pcap files and produce log files. Then CF was used to cor-
relate the individual modules’ alerts to detect C&C com-
munications. Results from individual modules and CF were
comparable to the ground truth, and the values of True
Positive Rate (TPR) and False Positive Rate (FPR) were
calculated. Table 1 shows the results.

Among the individual modules, the domain flux detection
module has the best results, with TPR of 86.4% and FPR

38954 VOLUME 6, 2018

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

FIGURE 8. The architecture of the correlation framework.

TABLE 1. The TPR and FPR of the individual detection modules.

of 24.9%. The results of IP and Tor detection modules are
affected by the quality of IP blacklist and Tor server list
respectively. We argue that IP and Tor detection modules can

only work hand in hand with infrastructure that intelligently
updates the blacklist and Tor server list in real time, which
is not the case in this scenario. Figure 9 shows part of a log
produced by Tor connection detection module. By correlat-
ing the detection modules alerts, CF increases the TPR and
decreases the FPR. Table 2 shows the TPR and FPR of CF
based on one and multiple modules.

Although the correlation based on one detection module
has the highest TPR, it also has the highest FPR. The best
results are for the correlation based on two detectionmodules,
with TPR of 82.3% and FPR of 13.6%. While the correlation

VOLUME 6, 2018 38955

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

FIGURE 9. Part of a log produced by Tor connection detection module.

TABLE 2. The TPR and FPR of the correlation framework.

based on three detection modules has the best FPR value,
TPR is the lowest. We argue that the acceptable TPR and FPR
values are specific to the environment and purpose in which
the modules are used. The correlation framework allows for
a selection between different TPR/FPR trade-offs. The best
selection is the one that yields the best balance between TPR
and FPR among the available choices. In comparison to the
best results of individual modules (86.4% for TPR and 24.9%
for FPR), the correlation based on two detection modules has
increased the detection rate and decreased the false alarms.
Despite the fact that TPR is slightly less, FPR has been
considerably reduced. Figure 10 shows part of a log produced
by the correlation framework.

FIGURE 10. Part of a log produced by the correlation framework.

In the second scenario, a virtual network connected to the
Internet was built, the network was injected with malware
samples, and the network traffic was recorded into pcap
files. As in the first scenario, those pcap files were used to
evaluate the detection modules and CF performance. The
analyzed malware samples were Trojan.Win32.Inject.sbqz,
Trojan.Win32.Staser.bazr, HEUR:Trojan.Win32.Generic and
Trojan-Spy.Win32.Zbot.qvcn.

As shown in Figure 11, two Windows XP SP3 virtual
machines were connected to a router. The virtual machines,
which provided internet connection, mimicked physical

FIGURE 11. Topology of the implemented virtual network.

computers in a home network where they can communicate
with each other.

The nictrace VirtualBox functionality [52] was used for
recording the virtual machines traffic to two pcap files, one
pcap file per virtual machine. Because the virtual machines
has no applications installed and the operating system updates
was disabled, the majority of the virtual machine’s traffic
was initiated by the installed malware to easily establish the
ground truth.

The HEUR:Trojan.Win32.Generic malware (MD5, fbb35
4f6773fb81927a59008cd9fd3a6) was run on the virtual
machine A for 48 hours. Through manual traffic anal-
ysis, we found that the virtual machine A connected
to the C&C center and the virtual machine B did not
become infected. The malware downloaded its payload from
dstkom.com/mandoc/lit23.pdf. The infected computer then
proceeded to use the domain flux technique to connect to the
C&C servers over ports 1778, 3363, 3478 and 3479.

The Trojan-Spy.Win32.Zbot.qvcn malware (MD5 hash,
52d3b26a03495d02414e621ee4d0c04e) was run on the same
virtual network for 10 hours. The malware communicated
solely through the Tor network and did not exhibit other
activities. In the first two minutes, the malware initiated
67 connections to 67 addresses belonging to the Tor network
and transferred 3698 kB of data. The flow of data dropped
for the remaining time but new connections were still made.
These findings were used to establish the ground truth and
test the Tor detection module.

The Trojan.Win32.Inject.sbqz, also known as Torrent-
Locker, (with MD5 hash aabe2844ee61e1f2969d7a96e
1355a99) and Trojan.Win32.Staser.bazr malware (with
MD5 hash e161a4d2716eb83552d3bd22ce5d603c) were run
on the same virtual network independently for 5 minutes
each. The C&C servers for these two malware use SSL
certificates for communication over https.

Table 3 and Table 4 show the results of individual detection
modules and the correlation framework respectively. Similar
to the first scenario, the correlation based on two detection
modules has the best results with TPR of 79% and FPR
of 16.8%.

38956 VOLUME 6, 2018

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

TABLE 3. The TPR and FPR of the individual detection modules.

TABLE 4. The TPR and FPR of the correlation framework.

FIGURE 12. Part of a log produced by BotDet for live traffic.

In the third scenario, part of the campus live traf-
fic (200 Mbps, 200 users, 550 nodes) was monitored for one
month. The four detection modules and CF were hosted on a
server (2x 4-core Intel Xeon CPU E5530@ 2.40GHz, 12 GB
RAM) with passive access to the campus live traffic via an
optical TAP (Test Access Port). Figure 12 shows part of a log
produced by the developed system BotDet, hosted on a server
with passive access to the campus live traffic.

FIGURE 13. CandC_Traffic_Two_Alerts ticket.

Figure 13 shows an example of the CandC_Traffic_Two
_Alerts ticket sent by BotDet via email to RT, where the
network security team can perform additional forensics and
respond to it.

V. CONCLUSION AND FUTURE WORK
This paper presents a novel approach called BotDet for bot-
net C&C traffic detection. The developed system (BotDet)
runs through two main phases, the first one includes devel-
oped modules to detect possible techniques used in botnet
C&C communications. The second phase uses a framework
for alert correlation, based on voting between the detection
modules. BotDet achieves detection rate and false alarm
of 82.3% and 13.6% respectively. Additionally, the blacklists
used in some of the detection modules are automatically
updated based on different intelligent feeds, which gives
BotDet the capability of real time detection.

As future work, more detection modules will be added to
detect other techniques used in botnet C&C communications.
Besides, alerts from external IDSs deployed on the network
can be received and fed into BotDet, which can ultimately
reduce the false positive rate of the system.

REFERENCES
[1] S. Belguith, N. Kaaniche, A. Jemai, M. Laurent, and R. Attia, ‘‘PAbAC:

A privacy preserving attribute based framework for fine grained access
control in clouds,’’ in Proc. 13th Int. Joint Conf. e-Bus. Telecommun.,
2016, pp. 133–146.

[2] US Department of Health and Human Services Report. Accessed:
Jan. 7, 2018. [Online]. Available: https://ocrportal.hhs.gov/ocr/
breach/breach_report.jsf

[3] P. J. Denning and D. E. Denning, ‘‘Discussing cyber attack,’’ Commun.
ACM, vol. 53, no. 9, pp. 29–31, 2010.

[4] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
‘‘Inferring internet denial-of-service activity,’’ ACM Trans. Comput. Syst.,
vol. 24, no. 2, pp. 115–139, 2006.

[5] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. P. Markatos,
and A. D. Keromytis, ‘‘Detecting targeted attacks using shadow honey-
pots,’’ in Usenix Secur., 2005.

[6] S. Staniford, J. A. Hoagland, and J. M. McAlerney, ‘‘Practical auto-
mated detection of stealthy portscans,’’ J. Comput. Secur., vol. 10, no. 1,
pp. 105–136, 2002.

[7] K.-K. R. Choo, ‘‘Cyber threat landscape faced by financial and insurance
industry,’’ Australian Inst. Criminol., Woden, Australia, Trends and Issues
in Crime and Criminal Justice no. 408, Tech. Rep., 2011, pp. 1–6.

[8] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, ‘‘Know your enemy:
Tracking botnets,’’ Honeynet Project & Res. Alliance, USA, Tech. Rep.,
Mar. 2005.

[9] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia, ‘‘PHOABE:
Securely outsourcing multi-authority attribute based encryption with pol-
icy hidden for cloud assisted IoT,’’ Comput. Netw., vol. 133, pp. 141–156,
2018.

[10] W. Sturgeon, ‘‘Net pioneer predicts overwhelming botnet surge,’’ CENET
Mag., San Francisco, CA, USA, Tech. Rep., Jan. 2007.

[11] B. AsSadhan, J. M. Moura, D. Lapsley, C. Jones, and W. T. Strayer,
‘‘Detecting botnets using command and control traffic,’’ in Proc. 8th IEEE
Int. Symp. Netw. Comput. Appl. (NCA), Jun. 2009, pp. 156–162.

[12] G. Gu, J. Zhang, and W. Lee, ‘‘BotSniffer: Detecting botnet command and
control channels in network traffic,’’ in Proc. 15th Annu. Netw. Distrib.
Syst. Secur. Symp. Dayton, OH, USA: Wright State Univ., 2008.

[13] S. Kumar, R. Sehgal, P. Singh, and A. Chaudhary. (2013).
‘‘Nepenthes honeypots based botnet detection.’’ [Online]. Available:
https://arxiv.org/abs/1303.3071

[14] S. García, A. Zunino, and M. Campo, ‘‘Survey on network-based botnet
detection methods,’’ Secur. Commun. Netw., vol. 7, no. 5, pp. 878–903,
2014.

[15] S. Behal, A. S. Brar, and K. Kumar. (2010). Signature-Based Bot-
net Detection and Prevention. [Online]. Available: http://www.rimtengg.
com/iscet/proceedings/pdfs/advcomp/148.pdf

[16] S. Arshad, M. Abbaspour, M. Kharrazi, and H. Sanatkar, ‘‘An anomaly-
based botnet detection approach for identifying stealthy botnets,’’ in Proc.
IEEE Int. Conf. Comput. Appl. Ind. Electron. (ICCAIE), Dec. 2011,
pp. 564–569.

VOLUME 6, 2018 38957

I. Ghafir et al.: BotDet: System for Real Time Botnet C&C Traffic Detection

[17] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan,
‘‘A survey of intrusion detection techniques in cloud,’’ J. Netw. Comput.
Appl., vol. 36, no. 1, pp. 42–57, 2013.

[18] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, ‘‘Intrusion detection
system: A comprehensive review,’’ J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 16–24, 2013.

[19] P. Agarwal and S. Satapathy, ‘‘Implementation of signature-based detec-
tion system using snort in windows,’’ Int. J. Innov. Adv. Comput. Sci., vol. 3,
no. 3, May 2014.

[20] S. Balram and M. Wilscy, ‘‘User traffic profile for traffic reduction and
effective botnet C&C detection,’’ IJ Netw. Secur., vol. 16, no. 1, pp. 46–52,
2014.

[21] G. Fedynyshyn, M. C. Chuah, and G. Tan, ‘‘Detection and classification
of different botnet C&C channels,’’ in Autonomic and Trusted Comput-
ing (Lecture Notes in Computer Science), vol. 6906, J. M. A. Calero,
L. T. Yang, F. G. Mármol, L. J. G. Villalba, A. X. Li, and Y. Wang, Eds.
Berlin, Germany: Springer, 2011

[22] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,
‘‘Automatically generating models for botnet detection,’’ in Computer
Security—ESORICS (Lecture Notes in Computer Science), vol. 5789,
M. Backes and P. Ning, Eds. Berlin, Germany: Springer, 2009.

[23] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki,
‘‘Exploiting temporal persistence to detect covert botnet channels,’’ in
Recent Advances Intrusion Detection (Lecture Notes in Computer Sci-
ence), vol. 5758, E. Kirda, S. Jha, and D. Balzarotti, Eds. Berlin, Germany:
Springer, 2009.

[24] V. Paxson, ‘‘Bro: A system for detecting network intruders in real-time,’’
Comput. Netw., vol. 31, nos. 23–24, pp. 2435–2463, 1999.

[25] The-Bro-Project. The Bro Network Security Monitor. Accessed:
Feb. 15, 2015. [Online]. Available: https://www.bro.org/

[26] Best-Practical-Solutions. RT: Request Tracker. Accessed: Jan. 15, 2018.
[Online]. Available: https://www.bestpractical.com/rt/

[27] J. B. Kowalski. Tor Network Status. Accessed: Apr. 7, 2015. [Online].
Available: http://torstatus.blutmagie.de/

[28] Malware-Capture-Facility-Project. Analysis of CTU-MALWARE-Capture-
1 (ZBOT.OOWO). Accessed: Apr. 7, 2015. [Online]. Available: http://mcfp.
weebly.com/analysis/analisis-ofctu-malware-capture-1-zbotoowo

[29] Botnet Malware Pcaps. Accessed: Apr. 7, 2015. [Online]. Available:
http://radkodimitrov.free.bg/

[30] Network-Security-Blog. DNS Fast Flux—Analysis and Detection.
Accessed: Apr. 7, 2015. [Online]. Available: http://newtorksecurityblog.
blogspot.cz/2015/02/dns-fast-flux-analysis-and-detection.html

[31] I. Ghafir and V. Prenosil, ‘‘Blacklist-based malicious ip traffic detection,’’
in Proc. Global Conf. Commun. Technol. (GCCT), Apr. 2015, pp. 229–233.

[32] Bro-Project. New_Connection Event. Accessed: Jun. 1, 2017. [Online].
Available: https://www.bro.org/sphinx/scripts/base/bif/event.bif.bro.html
#id-new_connection

[33] Kaspersky-Lab-ZAO. The Inevitable Move—64-Bit Zeus
Enhanced With Tor. Accessed: Apr. 7, 2015. [Online]. Available:
http://securelist.com/blog/events/58184/the-inevitable-move-64-bit-zeus-
enhanced-with-tor/

[34] NETRESEC. Detecting Tor Communication in Network Traffic.
Accessed: Apr. 7, 2015. [Online]. Available: http://www.netresec.com/
?page=Blog&month=2013-04&post=Detecting-TOR-Communication-
in-Network-Traffic

[35] I. Ghafir, V. Prenosil, M. Hammoudeh, L. Han, and U. Raza, ‘‘Mali-
cious SSL certificate detection: A step towards advanced persistent threat
defence,’’ in Proc. Int. Conf. Future Netw. Distrib. Syst., 2017, p. 27.

[36] Bro-Project. Intelligence Framework. Accessed: Feb. 15, 2017. [Online].
Available: https://www.bro.org/sphinx/frameworks/intel.html

[37] The-Bro-Project. x509_Certificate Event. Accessed: Jun. 1, 2017.
[Online]. Available: https://www.bro.org/sphinx/scripts/base/bif/plugins/
Bro_X509.events.bif.bro.html#id-x509_certificate

[38] B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and
G. Vigna, ‘‘Analysis of a botnet takeover,’’ IEEE Security Privacy, vol. 9,
no. 1, pp. 64–72, Jan./Feb. 2011.

[39] B. Stone-Gross et al., ‘‘Your botnet is my botnet: Analysis of a botnet
takeover,’’ in Proc. 16th ACM Conf. Comput. Commun. Secur., 2009,
pp. 635–647.

[40] I. Ghafir and V. Prenosil, ‘‘DNS query failure and algorithmically gener-
ated domain-flux detection,’’ in Proc. Int. Conf. Frontiers Commun., Netw.
Appl. (ICFCNA), 2014, pp. 1–5.

[41] Bro-Project. DNS_Message Event. Accessed: Aug. 1, 2017. [Online].
Available: https://www.bro.org/sphinx/scripts/base/bif/plugins/Bro_DNS.
events.bif.bro.html#id-dns_message

[42] M. Mowbray and J. Hagen, ‘‘Finding domain-generation algorithms by
looking at length distribution,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops (ISSREW), Nov. 2014, pp. 395–400.

[43] S. Doswell, N. Aslam, D. Kendall, andG. Sexton, ‘‘Please slow down!: The
impact on Tor performance from mobility,’’ in Proc. 3rd ACM Workshop
Secur. Privacy Smartphones Mobile Devices, 2013, pp. 87–92.

[44] S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. D. Keromytis,
‘‘Detection and analysis of eavesdropping in anonymous communication
networks,’’ Int. J. Inf. Secur., vol. 14, no. 3, pp. 205–220, 2015.

[45] A. Kapadia, ‘‘Analysis of the Tor browser and its security vulnerabilities,’’
Tufts Univ., Medford, MA, USA, Tech. Rep., 2014.

[46] R. Jagerman, W. Sabée, L. Versluis, M. de Vos, and J. Pouwelse. (2014).
‘‘The fifteen year struggle of decentralizing privacy-enhancing technol-
ogy.’’ [Online]. Available: https://arxiv.org/abs/1404.4818

[47] J. B. Kowalski. Tor Network Status. Accessed: Aug. 7, 2017. [Online].
Available: http://torstatus.blutmagie.de/

[48] I. Ghafir, J. Svoboda, and V. Prenosil, ‘‘Tor-based malware and Tor con-
nection detection,’’ in Proc. Int. Conf. Frontiers Commun., Netw. Appl.
(ICFCNA), Nov. 2014, pp. 1–6.

[49] Bro-Project. Connection_Established Event. Accessed: Nov. 1, 2017.
[Online]. Available: https://www.bro.org/sphinx/scripts/base/bif/plugins/
Bro_TCP.events.bif.bro.html#id-connection_established

[50] The-Bro-Project. Input Framework. Accessed: Jun. 1, 2016. [Online].
Available: https://www.bro.org/sphinx/frameworks/input.html

[51] NETRESEC.Detecting Tor Communication in Network Traffic. Accessed:
Apr. 7, 2015. [Online]. Available: http://www.netresec.com/?page=
Blog&month=2013-04&post=Detecting-TOR-Communication-in-
Network-Traffic

[52] Oracle. Network Tracing. Accessed: Apr. 7, 2015. [Online]. Available:
https://www.virtualbox.org/wiki/Network_tips

Authors’ photographs and biographies not available at the time of
publication.

38958 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	BOTDET DESIGN AND SPECIFICATIONS
	MALICIOUS IP ADDRESS DETECTION (MIPD)
	MALICIOUS SSL CERTIFICATE DETECTION (MSSLD)
	DOMAIN FLUX DETECTION (DFD)
	TOR CONNECTION DETECTION (TORCD)
	AUTOMATIC UPDATES
	BOTDET CORRELATION FRAMEWORK (CF)

	EVALUATION RESULTS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	Authors'

